学位論文内容の要旨

博士の専攻分野の名称 博士(医学) 氏名 高阪 真路

学位論文題名

癌遺伝子誘導細胞老化を回避する細胞の解析

【背景と目的】 1960年代, Hayflick により正常なヒトの体細胞を in vitro で培養すると、一定の回数細胞分裂を繰り返した後に分裂寿命を迎え細胞分裂を不可逆的に停止することが発見された. この現象、細胞老化は、癌抑制や個体老化の基礎機構として働いている可能性が示唆されてきた. 1990年代後半には癌遺伝子産物である Ras の強制発現によって、正常二倍体の細胞が、細胞老化と同様の細胞周期停止が起こることを示し、OIS (oncogene-induced senescence)と呼ばれ、以後内因性の癌抑制機構として注目されてきた. OIS の発見からこれまでに OIS は生体内で腫瘍形成に対する第一の防御壁となることが数多くの研究により示されおり、OIS の回避には p16、p53 pathwayの抑制が重要であることが切らかにされてきている. しかしながら、OIS 回避は直接発癌につながるのかという点は不明であり、それらを解決することが OIS の発癌防御機構としての有効性を評価する上で重要であると考えられる. 今回、我々はヒト正常二倍体線維芽細胞においてretrovirus vector を用いて H-RasV12を発現させ OIS 誘導させた際に、ある細胞集団は OIS が誘導されずに増殖を続けるという興味深い現象を観察した. 我々はこの OIS 回避細胞を OISEC (oncogene-induced senescence escaped cell)と名付け、その性質を調べることで腫瘍形成における OIS 回避の意味を考察した.

【材料と方法】 ヒト正常二倍体線維芽細胞, BJ にレトロウイルスベクターを用いて constitutively active form である H-RasV12 を強制発現させ、導入 20 日後に OIS 誘導されることなく spindle な形態を保ち増殖した細胞を OISEC とし、その性質を調べた。 OIS 細胞と OISEC の細胞周期に関与するタンパク発現量を Western blotting 法により比較検討した。 OISEC の stress-induced premature senescence (SIPS)誘導性を明らかにするために、OISEC の H_2O_2 処理に対する感受性を評価した。 OISEC の足場非依存性の増殖能を soft agar colony formation assay を用いて評価し、腫瘍形成能をヌードマウスの皮下に細胞を注入することで判定した。 フローサイトメーターと fluorescence *in situ* hybridization (FISH)解析を用いて OISEC の chromosomal instability について分析した。 OISEC の転写因子の mRNA 発現量を半定量的逆転写 PCR 法で測定した.

【結果】 BJ 細胞に H-RasV12 を導入 10 日後に平坦で幅広い細胞形態への変化を認め, senescence マーカーである senescence-associated- β -galactosidase (SA- β -gal)に濃染することを認めたが, H-RasV12 を導入 14 日後に OIS を回避して spindle な形態を保ち増殖を続ける細胞を認め, 20 日後には、増殖細胞が老化細胞よりも優勢な増殖を示した. Ras,リン酸化 ERK, Ets-2, p53, p21 の蛋白量は OIS 細胞と OISEC 間で大きな差はみられなかったが、p16 蛋白発現量は著明な低下を認めた. OISEC では H-RasV12 の再導入, p16 の導入,ストレス刺激によって,senescence の再誘導がされた.

 H_2O_2 処理 5 日後に OISEC の細胞増殖停止, p16 蛋白発現誘導を認めがみられ, 10 日後に平坦な細胞形態への変化, SA- β -gal 陽性を認めた. OISEC に colony 形成はみられなかったが, SV40 early region (ER)を OISEC に導入したところ, colony 形成を認め、なおかつ $in\ vivo$ での腫瘍形成能を認めた. OISEC の大部分は diploid であったが, SV40ER を導入された OISEC は高率で aneuploid であった. 約75%の OISEC の chromosome 1 のコピー数は 2 コピーであったが, SV40ER を導入することで, コピー数の増加を認めた. OISEC は Oct3/4, Sox2, Nanog などのいずれの転写因子の発現も認めたが, OIS 細胞において明らかな発現を示したのは Nanog のみであった.

【考察】 OISEC において p16 蛋白発現が消失していたことから, 当初は p16 プロモーターがメ チル化状態であると想定したが、 methylation specific PCR 解析により明らかな p16 プロモーターの メチル化は認めなかった. OISEC における p16 発現機構の保持は H₂O₂ 処理によって, p16 蛋白発現 誘導を認め, senescence が誘導されたことより示された. さらに H-Ras V12 を OISEC に再導入する ことで senescence が誘導されたことから, senescence を誘導するのに必要な Ras の閾値が OISEC に おいて上昇していることが示唆された. 転写因子 Ets や Id1 による p16 発現調節が Ras-induced senescence を制御していることから、OISEC において Ets, Id1 による p16 発現調節機構が破壊され ている可能性がある. OISEC に SV40ER を導入することで形質転換能が示されたことから, p53 および Rb の破壊が OISEC の形質転換に必要であると考えられる. SV40ER 導入により形質転換 した OISEC において異数体の割合の増加を認めたことは、p16、p53 は発癌刺激により異数体にな ることから細胞を守る発癌防御機構として働くことを示した. OISEC に幹細胞性に関わるとさ れる Nanog, Oct3/4, Sox2 などの転写因子の発現を認め, OIS を回避する細胞は幹細胞性の集団であ る可能性が示唆された. 逆に幹細胞は発癌刺激に対して抵抗性を持ち, DNA 損傷から守られてお り, OIS から容易に回避すると考えるのは理にかなっている. polycomb 遺伝子群である Bmi-1 は Ink4a locus にある p16, p19 の転写抑制することで、造血幹細胞や神経幹細胞の自己複製および増 殖を制御することを考慮すると、OISECにおける p16 の抑制は OISEC の持つ幹細胞性な特徴の一 つであると考えられる.

【結論】 本研究において我々は一部の幹細胞性をもった細胞は OIS を回避することを見出した. OISEC は悪性形質転換していないことが判明したが, その理由は p16 および p53 が機能している ために DNA 損傷が蓄積した細胞や, 異数体細胞を除去する抗癌機構が存在するためであり, p16, p53 pathway を破壊することで OIS 回避細胞は癌化することが示された. 今後我々は OISEC における OIS 抵抗性獲得の機序, 実際の生体内における OISEC の存在場所, および OISEC の幹細胞性についてさらに検討していく必要性がある.